
AI AND TRUST 

IN HEALTHCARE 



CHILMARK REPORT

Founded in 2007, Chilmark Research is a 

preeminent global research and advisory 

technologies (health IT) and use cases. 

to impact care delivery. 

healthcare sector.

ABOUT 

CHILMARK RESEARCH

2 © 2022 – 2023 Chilmark Research



TABLE OF CONTENTS

Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

 › Trust: A Social Currency

Chapter 1: Why Trust Matters Now and Ethical Guidelines . . . . . . . . . .7

Chapter 2: Validation of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

 › Does the model perform at scale beyond the original training set?

 » Dimensionality in digital health data 

 › Bias mitigation

 › Key Takeaways on Validation and Bias:

Chapter 3: Explainability and Transparency . . . . . . . . . . . . . . . . . . . . . .16

 › Emerging Critiques of Explainable AI

 › Rebuttal to the XAI Critique: ClosedLoop.AI Case Study

 › Key Takeaways on Explainability:

Chapter 4: Data Ethics and AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

 › Conclusion: Health Equity and the Value of Third-Party Standards 

Organizations for Building an Innovative, Trustworthy Ecosystem

 › Trust as an Intangible Asset: Building an Innovative Ecosystem

 › AI Liability Insurance and Consortia 

 › Recommendations

About the author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendix: Case Studies for Building Responsible AI . . . . . . . . . . . . . . 30

 › Case Study 1 Design and Evaluation of AI – Including the Users in 

Project Design

 » Sepsis Predictive Model Development at UCHealth

 › Case Study 2RPA and Data Integrity Case Study



CHILMARK REPORT

EXECUTIVE SUMMARY

Credit. 

1 

4 © 2022 – 2023 Chilmark Research



AI AND TRUST IN HEALTHCARE

INTRODUCTION

 

2 

3 

4 

 

Figure 1. 

Consumer Technology Association’s

Facilitating Transparent 

and Smooth Human 

Interaction

Product’s Ability to 

Perform as Technically 

Expected

Product Acceptability 

Within the Regulated 

Healthcare Industry

HUMAN TRUST TECHNICAL TRUST REGULATORY TRUST

OF HEALTHCARE AI PRODUCTS

3 TRUSTWORTHINESS AREAS

© 2022 – 2023 Chilmark Research 5

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://en.wikipedia.org/wiki/Differential_privacy
https://www-newsweek-com.cdn.ampproject.org/c/s/www.newsweek.com/us-health-care-faces-crisis-trust-opinion-1635658?amp=1
https://www.nejm.org/doi/full/10.1056/NEJMp1407373#t=article
https://www.nejm.org/doi/full/10.1056/NEJMp1407373#t=article
https://www.cta.tech/Resources/Newsroom/Media-Releases/2021/February/CTA-Launches-New-Trustworthiness-Standard-for-AI-i
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Does the model perform at scale beyond the 

original training set?

6 
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A recent study of algorithms approved 

by the FDA between 2008 to 2021 found a total of 

118 approvals.6 The study found that 17/118 posted 

infer generalizability or presence of bias, the authors assert. 

Dimensionality in digital health data 7

dimensionality
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Analytical Association
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Is there a valid clinical association between 

your SaMD output and your SaMD’s 

targeted clinical condition?

Does your SaMD correctly process input 

data to generate accurate, reliable, and 

precise output data?

Deos use of your SaMD’s accurate, reliable, 

and precise output data achieve your 

intended purpose in your target population 

in the context of clinical cara?
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https://www.sciencedirect.com/science/article/abs/pii/S1076633221004153
https://pubmed.ncbi.nlm.nih.gov/29854127/
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https://slate.com/technology/2021/06/kidney-transplant-dialysis-race-adjustment.html
https://slate.com/technology/2021/06/kidney-transplant-dialysis-race-adjustment.html
https://www.nejm.org/doi/full/10.1056/NEJMms2004740
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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https://www.nist.gov/publications/towards-standard-identifying-and-managing-bias-artificial-intelligence
https://www.nist.gov/publications/towards-standard-identifying-and-managing-bias-artificial-intelligence
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https://www.chicagobooth.edu/research/center-for-applied-artificial-intelligence/research/algorithmic-bias
https://www.chicagobooth.edu/research/center-for-applied-artificial-intelligence/research/algorithmic-bias
https://www.vanderschaar-lab.com/synthetic-data-breaking-the-data-logjam-in-machine-learning-for-healthcare/
https://www.nature.com/articles/s41551-021-00751-8
https://www.nature.com/articles/s41551-021-00751-8
https://www.virtuousai.com/
https://biasfix.com
https://www.eticasconsulting.com/algorithmic-audits/
http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/
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https://forhumanity.center/independent-audit-of-ai-systems/
https://www.getparity.ai/about
https://d.docs.live.net/673cdabc28a5ead4/Documents/arthur.ai
https://aif360.mybluemix.net/
https://pair-code.github.io/what-if-tool/
https://github.com/oracle/Skater
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https://cloud.google.com/explainable-ai
https://help.tableau.com/current/pro/desktop/en-us/explain_data_explained.htm
https://www.ibm.com/watson/explainable-ai?utm_content=SRCWW&p1=Search&p4=43700064515261172&p5=e&gclid=CjwKCAiAm7OMBhAQEiwArvGi3DLcpyP6MFxtkaOPQ8fwPe9gnExEsro8pXtleW9FNhhFSzOVA2lrwRoCa6EQAvD_BwE&gclsrc=aw.ds
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability
https://kyndi.com/
https://darwinai.com/our-technology/
https://d.docs.live.net/673cdabc28a5ead4/Documents/fiddler.ai
https://factmata.com/
https://www.altfi.com/companies/logicalglue
https://www.altfi.com/companies/logicalglue
https://flowcast.ai/
https://www.imandra.ai/core
https://www.darpa.mil/program/explainable-artificial-intelligence
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https://arxiv.org/abs/2006.10609#:~:text=The%20'Clever%20Hans'%20effect%20occurs,on%20the%20'wrong'%20features.
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https://www.healthcareitnews.com/news/cms-names-closedloopai-winner-ai-health-outcomes-challenge
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https://jamanetwork.com/journals/jama/article-abstract/2787207
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https://www.onetrust.com/
https://privacera.com/
http://acuratio.com/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647243/
https://www.nature.com/articles/s41551-021-00751-8
https://hcil.umd.edu/human-centered-ai/
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Trust as an Intangible Asset: Building an 
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https://press.princeton.edu/books/hardcover/9780691211589/restarting-the-future
https://press.princeton.edu/books/hardcover/9780691211589/restarting-the-future
https://www.ft.com/content/a14263cd-35e0-4f34-b10e-ae8523fad8d5
https://www.ft.com/content/a14263cd-35e0-4f34-b10e-ae8523fad8d5
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https://catalyst.nejm.org/doi/full/10.1056/CAT.21.0242
https://qz.com/1540594/treating-algorithms-like-prescription-drugs-could-reduce-ai-bias/
https://catalyst.nejm.org/doi/full/10.1056/CAT.21.0242
https://qz.com/1540594/treating-algorithms-like-prescription-drugs-could-reduce-ai-bias/
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APPENDIX:  
CASE STUDIES FOR 
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Case Study 1  

in Project Design
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https://med.nyu.edu/centers-programs/healthcare-innovation-delivery-science/predictive-analytics-unit/symposium-machine-learning-implementation-evaluation
https://med.nyu.edu/centers-programs/healthcare-innovation-delivery-science/predictive-analytics-unit/symposium-machine-learning-implementation-evaluation
https://towardsdatascience.com/decision-trees-understanding-the-basis-of-ensemble-methods-e075d5bfa704
https://towardsdatascience.com/decision-trees-understanding-the-basis-of-ensemble-methods-e075d5bfa704
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Figure 14. 
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Case Study 2 

RPA and Data Integrity Case Study
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